
Derivation of Sequential,
Real-Time, Process-Control Programs

/jj//,,. ,,. , L/, " Keith Marzullo*
i Fred B. Schneider**

//- _/-_-t._ Navin Budhiraja*

91-1217

July 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Supported in part by the Defense Advanced Research Projects Agency (DoD)
under NASA Ames grant number NAG 2-593 Contract N00140-87-C-8904 and
a grant from Xerox Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author and do
not reflect the views of these agencies.
**Supported in part by the Office of Naval Research under contract N00014-86-
K-0092, the National Science Foundation under Grant No. CCR-9003440, and

Digital Equipment Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author and do
not reflect the views of these agencies.

Derivation of Sequential,

Real-Time, Process-Control Programs

Ill

Keith Mzrzullo

Fred B. Schneider
IIi

Navin Budhi_ja

Department of Computer Science
Comell University

Ithaca, New York 14853

Abstract

The use of weakest-precondition predicate transformers in the
derivation of sequential, process-control software is discussed.
Only one extension to Dijkstra's calculus for deriving ordinary

sequential programs was found to be necessary: function-valued
auxiliary variables. These auxiliary variables are needed for reason-
ing about states of a physical process that exist during program tran-
sitions.

1. Introduction

For the past few years, we have been exploring the use of assertional

reasoning in the construction of process-control software. Our intent was to

employ an existing method, perhaps with a few extensions, and systemati-

cally derive process-control programs from specifications. Use of an existing

method had both a scientific and a pragmatic motivation. The scientific

motivation was based on our expectation that the difficulties we encountered

by using an extant method would provide insights into what distinguishes

o

Supported in pert by the Defense Advanced Research Projects Agency 03_D)
under NASA Ames grant number NAG 2-593 Contract N00140-87-C-8904 and a
grant from Xerox C_on. Any opinions, findings, and conclusions or recom-
mendations expressedin this publication ate those of the author and do not reflect
the views of these agencies.

stilt

Supported in part by the Office of Naval Research under contract N00014-
86-K-0092, the National Science Foundation under Grant No. CCR-9(X)3440, and
Digital Equipment Cot_ration. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication ate those of the author and do not reflect
the views of these agencies.

process-controlprogramsfromordinarysequentialandconcurrentprograms.
Thepragmaticmotivationwasthatextendingawell understood method was

likely to be easier than developing a new one.

Our investigations have been slructured as a series of experiments.

Each experiment is based on a simple process-conLrol problem that (we feel)

epitomizes some aspect of process-control programming. We st&ned with

the simplest prncess-control problem imaginable--a sequential control-

program running on a single, fault-free processor. By reading sensors and

writing to actuators, this program controls an on-going physical process.

Solving such a problem requires reasoning about control-program execution

times, something that has long been considered an integral pan of process-

control programming. We are well aware, however, that any conclusions

from this experiment would have to be regarded as tentative. By considering

a sequential control-program, problems arising due to resoun:e contention are

avoided; and by assuming a fault-free processor, complications associated

with implementing fault-tolerance are being ignored.

Simplifying assumptions not withstanding, our first experiment did

lead to some insights about the use of assertional reasoning in writing

process-control programs. These insights are the subject of this paper. In

section 2, we describe extensions to Dijkstra's weakest-precondition calculus

[2] [3] that we found necessary for deriving sequential process-control pro-

grams. Section 3 illustrates the use of these extensions and the calculus by

giving an example derivation of a control program. Conclusions appear in
section 4.

2. Using Weakest Preconditions with Physical Processes

Process-control problems are often specified in terms of restrictions on

permissible states of some physical system. By setting actuators to manipu-

late the process being controlled, a control program ensures that none of

these proscribed states is ever entered. The actions of the control program

are, therefore, closely linked to the state of the physical process being con-

trolled. Consequently, when deriving a comml program, it is necessary to

reason about both the program state and the state of the physical process

being controlled.

Assenional methods for derivir_g programs are based on manipulating

logical formulae, called assertions, that characterize sets of program states.

One way to employ assertional methods in the design of a process-control

program is to augment the program state space so that it includes information

about the state of the physical process being controlled. Doing so, however,

requires extending the roles used to reason about program execution, as fol-
lows.

(I) While a program statement is executed, changes occur to the state of

the physical process being controlled. Rules characterizing the

effects of program execution must be modified to reflect these other

state changes.

-1-

(2) Statements whose execution involves interaction with semors and/or

actuators must be axiomatized as rules relating states before, during,
and after execution.

The remainder of this section discusses these extemiom.

2.1. Reality Variables

The state space of physical system is usually defined by a collection of

state components, each of which is indexed by some independent (physical)

parameters. For example, the state of a railroad train at a time T can be

characterized by its position X(T), its speed V(T), and its acceleration A (7").

Note that the choice of time as the independent parameter is arbitrary. If its

velocity is always greater than 0, then a train at position X could equally well

be described by time T(X), speed V(X), and acceleration A(X'). As physicists

learned long ago, quantities that are convenient for the task at hand should be

selected as the independent parameters.

The state space of a program can be augmented to include the state of a

physical process. For each state component Q,., we add to the program state

space a function-valued program variable qi. called a reality v_iable, t Each

reality variable replicates (in the program's state space) information about a

physical system during program execution. Initially, the domain of a reality

variable qi will be empty: as the independent parameter Pi for Qi changes,

the domain of qi is extended to include h_ values over which Pi has ranged.

Reality variables are entirely fictiona'. They allow us to describe and reason

about the state of a physical system 'Oyusing assertions, but they are not actu-

ally maintained in memory. Thus, they are a form of auxiliary variable [1].

In order to define and manipulate expressions involving function-

valued program variables, like reality variables, it will be convenient to have

some notation. Fofiowing [2], given a function f with domain dora(f), the

function expression

(i,., x E D: g(x))

isdefinedtobe a functionwhose domain isdora(/')uD and whose valueat

any pointa isg(a) ifa _ D andf(a) otherwise.As a notationalconvenience,

we define:

(f; xGD:g(x); xG D':h(x)) = ((J'; x6D:g(x)); xGD':h(x))

And, in specifying domains, we use the notation/ow., high to denote the set
{a I low <a ,:high }.

1In the sequel, we use upper-case identifiers to denote (physical) state com-

ponents and the corresponding lower-case identifier to denote the reality variables
that model these.

-2-

2.2. Preserving the Fiction: Updating Reality Variables

The stateof a physicalsystemischanged by a physicalprocess.Typi-

cafiy, the changes can be characterized by a set of equations relating the

current values of various state components to their recent values. We cannot

expect a physical process m update the reality variables being used in model-

ing the state of a physical system. And, since the weakest-precondition cal-

culus is based on the presumption that all changes to the truth of an assertion

are the result of program execution, we have no choice but to regard the pro-

gram itself as performing updates to reality variables. Program statements

can compute these updates by using the equations that characterize the way

the physical state components change.

Consider some physical state c_mponent Q(P) being modeled by a

reality variable q(p), and suppose that as long as no actuator changes during

some interval from P to P +8, changes to Q axe characterized by the follow-

ing continuous equation.

(2.1) Q(P+A) - F(Q(P),A) for0<A_8

Let (S)s denote a statement whose execution coincides with a change of 8 by

parameter P. Then, execution of (S)$ is equivalent to executing S and, as

part of the same atomic action, changing p and q in accordance with (2.1).

This state change is modeled by a program fragment:

S, p, q :---p+8, (q; i E p ..p+8: F(q(p), i-p))

Using the weakest-precondition predicate transformers for multiple-

assignment and statement composition, we obtain the following predicate

transformer characterization for (S)s.

R)
= _wp definition of ";%

wp(S, wp(p, q :=p+5, (q; i G p ..p+& F(q(p), i-p)), R))

= _wp definition of ":=",

wp(S, R_'_. (q: i, p..e+a: _q00,i-p)))

Notice that when the independent parameter 8 in (S)a models the pas-

sage of time, (S)a is a statementthatexecutes for 8 seconds. The definition
ofwp(($) a, R) then asserts that after executing (S)_s the current time has been

incremented by 8 and all other reality variables have been updated as if 8

seconds had elapsed. However, our characterization of (S)e also allows the

independent parameter 8 to be a quantity other than time, making it possible

to reason in the coordinate system best suited for the problem at hand. Also

notice thaL according to our weakest precondition characterization of (S)a,

an ordinary statement 5 must be regarded as being equivalent to (S)o. This is
because

wp((S)o, R) = wp($, R)

holds, since F(q(P), O)=q(p) according to (2.1).

-3-

To illustratethe useof wp((S)s, ._) in an actual process-control pro-

gramming problem, suppose we are iaterested in controlling the speed of a

railroad train. Define reality variable v(x) to be the speed of the train when it

is at a given position x. From Newton's Laws of Motion, we know that if the

train does not accelerate during an interval of 5 seconds, then reality variable

v can be characterized by the following equation:

(2.2) v(x+A) =v(x) for0<A<v(x)*5

Thus, according to our definition for wp((S)s, R), we have the following

weakest precondition characterization for a statement (S)s that takes duration

5 seconds and is executed while a train is not accelerating.

wp (<S)s, R)

= ,,(2.2) and wp definition for (S)s*

wp(S. R_'+;_x).s.<,; t, • x+,<_>.s. ,¢o))

2.3. Interacting with a Physical Process

To have broad applicability, a method for reasoning about prrw.css-

control programs must not restrict the types of sensors and actuators that it

can handle. Rules for reasoning about sensors and actuators can be derived

modeling interactions with sensors and actuators by statements that

read and update reality variables, and then

(2) using the rules provided for reasoning about ordinary statements to

derive rule.s for reasoning about these models.

As long as reality variables correctly model the physical process, the result-

ing rules will be sound and can be used to reason about how a control pro-

gram interacts with the process it controls.

To illustrate how sensors and actuators are modeled, we return to rail-

road control. Consider an actuator go(t) and a sensor await(c). Executing
go(t) causes the train to accelerate/decelerate with some maximum constant

acceleration ACC (say) until target speed t is reached; execution terminates

only when the train reaches its target speed, await(c), if invoked while the

train is not accelerating, delays execution of a program until the train is at

location c. 2

Define Vlen(u, t) to be the distance that a train travels while it is

accelerating from a speed u to target speed t:.

Vlen(u, t) = I(u2-t2)/(2*ACC)l

by

(I)

2If go(t) is the only actuator that can cause accelea'ation, then the condition that

await(c) is never executed while the train is accelerating is equivalent to stipulating
that a train is conm3Ued by a single sequential lXOgram.

4-

Define Vat(u. t. x) to be the speed of a train after having traveled x meters.

O<x<Vlen(u. t). from the point at which it started accelerating from speed u
to t:

Iu2+2*x*ACC ifu <t

Vat(u,t,x) = _u2-2*x*ACC ifu>t

u ift=u

The effect of executing go(t) can be modeled as an update to reality

variables x and v. The value of x is increased by Vlen(v(x), t) and the

domain of v is extended to include x. x+Vlen(v(x), t):

go(t): x, v :--x+Vlen(v(x), t),

(v; l _ x .. x +Vlen(v(x), t) : Vat(v(x), t, l-x))

This multiple-assignment statement model provides a basis for calculating

wp(go(t), R):

wp(go(t), R)

= ,model of go(t)*

wp(x, v := x+Vlen(v(x), t),

(v; I e x ..x +Vten(v(x), t): Vat(v(x), t, l-x)), R)

= _,wp definition of
X, ¥

Rx+v_(v(x).O.(v:l•x..z+vzo.(,¢O,t):.VatO,¢O.t,l-z))

Similarly, await(c) can be modeled by an alternative command:

await(c): lfx<c ^ O<v(x) --_x, v :-c, (v; 1¢ x ..c: v(x)) fi

Our model for await(c) updates reality variables x and v ifx<c and O<v(x)

hold; otherwise, it delays forever. Using the weakest precondition for if, we

can calculate a weakest precondition predicate transformer for await(c):

wp (await(c), R)

= _model of await(c).

wp(ifx<c ^ O<v(x) --_ x, v := c, (v; 1G x .. c: v(X)) r, R)

= .wp definition of if.

x<c ^ 0<v(x)

^ (x<c ^ O<v(x) =:_wp(x, v := C, (v; 1 ¢ x .. C: v(x)), R))

= _wp definition of":=" and predicate logic.

x_c ^O<v(x)^R_'," 0':tlz,.c:,_))

3. An Example

Other than the extensions mentioned above, the methodology of [21 and

[3] for deriving ordinary sequential programs can be used, unchanged, for

deriving sequential process-control programs. In this section, we illustrate

that methodology with a simple railroad-control problem.

Railroad tracks are typically partitioned into segments, called

-5-

blocks. Each block i, has an associated starting location bi and end-

ing location bi+l, where bi<bi+l, and a range of permissible speeds

mni .. taxi, where O_rnni <taxi. Desired is a program to control the

speed of a point train 3 so that it travels from bo to b,, maintaining

safe speeds along the way. Use go(t) and await(c), as defined

above, for interactions between a single sequential control program

and the train.

First, we formalize the problem. The train has made a safe passage from

location a to b provided the following holds.

Sale (a, b): a .. bKdom(v)

^ (V/: a<l_b: bi_l_bi+l :=_mni_v(l)_ntxi)

The first conjunct of Sale(a, b) asserts that the train has actually traveled

from a to b, and the second conjunct asserts that the train's speed satisfied

the restrictions associated with each block it occupied. Using Safe (a, b), we

can specify the above railroad control problem in terms of weakest precondi-
tions:

(3.1) xfbo^v--(; bo:vo)_wp(S, Sale(bo, bn)^x=b,)

This formula constrains S to be a program that terminates with the train at

location b,, after having traveled at safe speeds to get there, provided S is

started with the train at location bo traveling with speed Vo.4

3.1. A First Try

Having formalized the specification for a correct control program S, we

now proceed with the derivation. The universal quantifier in conjunct

Safe(bo, b,,) of the result assertion is a tip-off that S should be structured as a

loop. Thus, we employ a standard hueristic from [2]---replacing a constant

by a variable--and derive a loop invariant from the result assertion. Replac-

ing n in the result assertion by a new program variable h (for "here") we get:

!: Sale(bo, bh) ^ xffibh ^ O<h_n

Since I ^ h =n implies result assertion Sale(bo, b,_) ^ x=b,,, we conclude that

the loop guard must be h._n (or something that implies h an) and conjecture

that S has the following structure:

3Assuming a point train is not fundamental. It merely simplifies some of the

derivation that follows. By using a configuration space wansformafion [4], the con-
trol problem for a length L train can be transformed to a control problem for a point
train on a Wack with additional blocks.

4If the conjunct xfb,_ is omitted from the result asscz'tion, then it would be per-

missible for control program S to terminate long after the tram had lmued point b,.

We have deemed such behavior unacceptable and so our specification prohibits it.

-6-

S: St {/}

doh_n-.-){l Ah_n} $2 {/}od {h-hAl}

{Sa/e(bo,b.)}

Program S willsatisfyitsspecificationprovidedwe findstatementsS_ and

$2 thatsatisfythefollowingspecifications.

(3.2) x=bo ^ v=(; b0:v0)=_ wp(Sl, i)

(3.3) I ^ h_n =_ wp(S2,I)

Formula (3,2)is the specificationfor the loop initialization;(3.3)is the

specificationfortheloopbody.

According to specification(3.2),$I must establishI. Ol_erve thatan

easy way toestablishI isby settingh toO. So, we use wp to calculatean

assertionthatmust hold beforeexecutingh :=0 inorderforI to hold after-

wards.

wp(h :--O,I)

- .wp definitionof":--".

(Safe(bo,bh)A x--b_,̂ O<h <n)_

ffi .textualsubstitution.

Safe(bo,bo) ^ x=bo

= ,definition ofSafe(a,b),_

b0 _ dom(v) ^ mno<v(bo)_mxo ^ x"bo

Notice that x-'bo ^ v=(; bo:vo), the antecedent of specification (3.1) for S,

implies wp(h :=0, I) only if mno<vo<mxo. Thus, executing h 7-0 estab-

lishes the loop invatiant only under certain condition,s---the initial speed of

the train must be safe for travel in block bo. We identify this requirement

explicitly.

Assumption ASI. mno s vo <mxo

In retrospect, this requirement should not be surprising. It is worth noting,

however, that this implicit assumption was exposed simply by adhering to a

rigorous calculus in deriving the program. Including this assumption in the

program we have developedso fat,we get:

S: {x=bo^v=(; bo:vo)^ASl}

h :ffi0 {i: Safe(bo, bh) ^ x=bh ^ O<h<n}

doh_n-.+{I Ah¢n) $2 {l}od {hfn^l}

{Safe(bo,b,,)}

We now refine 52, the body of the loop. Based on our choice of guard,

we know that the loop will terminate when h equals n. Initially, h is 0. Thus,

for Sz to make progress towards termination, h must be increased; and for $2

to satisfy specification (3.3), S2 must reestablish I. To investigate the feasi-

bility of increasing h by I, we calculate wp(h := h+l, l).

-7-

wp (h := h + !, I)

= _wp definition of ":="*

(Safe(bo, bh) ^ x=bh ^ 0<h<:n)_+l

= ,xtexVaal substitution*

Safe(bo. bh+l) ^ x=bh+l A O<h+ l <n

= ,_a <b <c =, (Safe(a. c) - (Sctfe(a. b) ^ Safe(b, c))),,

Safe(bo, bh) A Safe(bh, bh+l) ^ x=bh+l ^ O<h+lgn

Since I ^ h an holds at the start of $2, we know that *,.he first and last con-

We must, therefore,juncts of wp(h :=h+l,I) hold before $2 executes.

arrange for the remaining conjuncts to hold.

Safe(bh, bh+l) A x=bh.l

= ,definition of Safe (a. b),

bh.. bh+l ff_tom (v)

^ (V/: bh';l_bh+|: bi<l_bi.l

:=_mni<v(1)<ntxi) ^ Xffibtl+l

= *.x=bh+l =_ bo .. bh+l_dOm(v)*

(V/: bhe_l<bh+l: bi_l<bi+l ::orani!gv(l)Smxi) ^ xfbh+i

= _predicate logic*

(3.4) (V/: bk<l <bh+l" biSl<bi÷t :=_ m/li_v(l)gm.xi)

^ max(mnh, mnh÷l)<v(bh÷l)<min(mxh, mxh+l) ^ x-bh+ 1

We consider the final conjunct first. It is easy to establish this conjunct by

executing await(bh+ l), so we compute:

wp(awalt(bh÷l), (3.4))

= _wp calculus,

xSbh÷l ^ O<v(x)

^ ((VI: bh!gl<bh+l: bi<lSbi÷l ::omni<v(l)C_rrlxi)

^ max(mnh, mnh+l)Sv(bh+l)Smirt(mx_, mxh÷l)
x-b _. v^ - h+l)_kt.(v: /tz.._.t:v(z))

= _textual substitution and simplification.

(3.5) xSbh÷t ^ O<v(x)

^ (VI: bhSl<bh+l: bi<lSbi+l :=¢

mnl < (v; 1 _ x.. bh+l" v(x)Xl) < mxl)

^ max(mn_, mn_+l)

s(v; l E x .. bh+t: vf'z.)Xbh+l)

< min(maA, rnxh+ l)

Unfortunately, (3.5) is not implied by what is known to hold at the start of

$2, I ^h_n. We must therefore employ additional statements to transform

the state from one satisfying ! ^ h _n to one satisfying (3.5). The final con-

junct of (3.5) can be established by executing go(x), where _ is any speed that

is safe and is attainable by accelerating from v(b_). That is, x must satisfy:

(3.6) max(mn_, mns+_)<x<min(mxh, taxi+t)

^ Vlen(v(bh),x)<bh+_-bh

-8-

Nothingstated thus far implies that it should be possible to accelerate

from any safe v(bh) to a safe v(bh+i) in at most a distance of bh+t-bh, and

so without making further assumptions about speed constraints, our control

problem is unsolvable. We have uncovered another hidden assumption

requiredto control a train:

Assumption AS2. (Vi, s: 0<i <n ^ max(toni-t, mni),_s<min(mxi_l, taxi):

_s" : max(mnl, nmi÷l)<s" Smin(mxi, taXi+l):

Vlen(s, sD<b_.l--bD))

Henceforth,we assume thatspeedconstraintsforblocksdo satisfyAS2. (It

isnot difficultto prove thatany controlproblem forwhich thereisa safe

pathfrom b0 to b, can alwaysbe reformulatedasone withmore restrictive

minimum and maximum speedssatisfyingAS2.)

A targetspeed x satisfying(3.6)can now be computed as follows.

First,due to thedefinitionof Vlen(u,t),thesetof attainablespeedss---both

safeand unsafeBstartingfrom positionbh ischaracterizedby:

X/v(bh)2-2*ACC *(bh+l-bh) < s S _v(bh)l + 2*ACC*(bh+l-bh)

Second, the set of safe speeds s for location bh+i is given by:

max(mnh, mnh+t) S s < min(mxh, mxh+t)

The intersection of these sets, therefore, is the set of safe and attainable

speeds; the maximum of this intersection is the greatest safe speed--aime is

money for a railroad.

x = min(_lv(bh)2+2*ACC*(bh+t-bh), mxh, mxh+|)

Using this value of x for the target speed ensures that the final conjunct of

(3.5) will hold.

The penultimateconjunctof (3.5)now isimpliedby our choiceof x

and S_l'e(bo,bh). Thus, our only remainingobligationisthe truthof the

second conjunct of (3.5),0<v(x). Recall thatO<mni<m,r_ holds,by

assumption.Thus, foralli,mx_s0 and so successivevaluesof x areeach

non-zero. Provided vo_O, we can strengthen the loop invariant to include

0<v(x) asa conjunct.Thisresultsinthefollowingprogram.

-9-

S: {x=bo A v=(; bo:vo) A ASI ^ 0<Vo ^AS2}
h :=0

{1: Safe(bo, bh) ^ x=bh A OSh<n ,', 0<v(x))

do h_n ---) {! Ah_n}

$2: t :-- min(sqrt(v(bh)2+2*ACC*(bh+t-bh)),

mxh, mxh+l);

go(t);

await(bh+i);
h :=h+l

{1}

od {h=n ^ !}

{Safe(bo,b,)}

As the finalstepof thederivatior,,we deletereferencesto realityvari-

ablesfrom program statements.Recall,realityvariablesareauxiliaryand,

therefore,may notaffectprogram execution.The only referencetoa reality

variablefrom withinstatementsintheprogram above istheexpressionv(bs).

We can maintainthisvalue in a program variablevelby strengtheningthe

loop invariantand adding assignmentsaftereach go statement.Making

thesechangesresultsinthefollowingcontrolprogram; itsolvestherailroad

controlproblem.

S: {x=bo A v=(; bo:Vo)AASI AO<Vo ^AS2}

h:=0; vel :ffivo

{I: Safe(bo, bh) A Xffibh A O<hSn ^ 0<v(x)

^ velfv(bh)}

doh_n _ {I Ah_n}

SI: t :ffimin(sqrt(vell+2*ACC*(bh+l-bh)),

mxh, mxh+l);

go(t);
vel :- t;

await(bh +!);
h :=h+l

{1}
od {hfn A l}

{Sa/e(bo.b.)}

3.2. An Improved Control Program

Although correct, the control program just derived does not always per-

mit a train to travel as quickly as possible. Modifying the derivation to max-

imize train speed is not difficult, however. First, we rewrite (3.4) as follows:

(_'l: bh <l <bh+l: bi<l<bi+t ::_ mniC;v(l)<mxi)

^ max(mnh_ I, mnA)Sv(bh)<min(mxA_t, m:th)

^ max(mnh, mnh+l)_v(bh+t)Smin(mxh, mxh+t) ^ xffibh+l

Then, rather than allowing the final conjunct to drive the derivation (as it did

above), we concentrate on the penultimate conjunct. The loop body that

-10-

results from this strategy is:

$2: go(t i);
await(bh +I - Vten (t I , t2));

go(t2);
h :=h+1

where t I and t 2 arc the largest speeds satisfying:

Vlen(v(bh), tl)+Vlen(tl, t2)<bh+ !-oh ^ m nhSt! Smxh

^ max(mnh, mnh+l)_t2<min(mxh, mxh+,)

Computing values for t_ and t2 and using this new $2 as a loop body, we get

the following revised control program.

S: {x:bo ^ v=(; bo:vo)^ASl A0<v0AAS2}

h :=O; vel :=v 0

{I: Safe(bo, bh) A x=bh ^ O<hgn A 0<V(X)

^ vet--v(bh)}
do hc:n -._ {I ^h_n}

$2: tl :=min(mxh,

sqrt(vel2 + 2*ACC *(bh÷t -bh)),
.mx_+l vel2

sqrt(---_ +"_ + AC C *(Oh+ l -bh)));

t2 :- min(t,, mst,+l);

go(tl);

await(bh+l -Vlen(t l, t2));

go(tz);

vel := t2;
h :ffih+l

{!}
od {h=n Ai}

{Safe(bo, b,)}

4. Discussion

We were pleased to discover that only minor modifications were

needed in order to employ Dtjkstra's weakest-precondition calculus in deriv-

ing sequential, real-time, process-control programs. Dijkstra's calculus,

unfortunately, is based on regarding a program as a relation between sets of

states and, therefore, does not scale-up to ¢oncummt and distributed pro-

grams, which are best thought of as "invariant maintainers". The extensions

derived in section 2 for handling the state of a physical proccss--¢l_ contri-

bution of this paper---do scale up. For example, we have b_n able to use

them along with a logic for proving arbitrary safety properties of concurrent

programs, Proof Outline Logic [5].

Second, both of the control programs w¢ developed assumed that

assignment statements are instantaneous. In tulity, executing assignment

statements does take time, and the state of tbe ¢ontraned process can change

during that interval. It is not difficult to derive control programs for this

-11-

morerealistic setting. The predicate logic details become a bit messier as do

the constants, but nothing about the structure of the derivation or resulting

programs changes.

Reality variables are history variables--they encode in the current pro-

gram state information about past system states. Using history variables for

reasoning about programs is usually a bad idea, because it introduces distinc-

tions that should be irrelevant. The current state---not bow it was

computed--should be of concem when reasoning about what a program will

do next. In reasoning about process-control systems, however, one has no

choice but to employ history variables of some sort. This is because the past

instants for which the state of a physical process is defined is a su'ict superset

of the past instants for which the state of a control program is defined. A

program implements a discrete transition system, while a physical process is

likely to implement a continuous transition system. History variables allow

us to reason about all of the behavior of the physical process, including those

states that exist while the program state is in transition, hence undefined.

Acknowledgment. Richard Brown read an early version of this paper and

provided helpful comments.

References

[I] Clint, M. Program proving: Coroutines. Actalnformat_a2, 1 (1973),
50-63.

[2] Giles, D. The Science of Programming. Springer-Verlag, New York,
1981.

[3] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, N.J.,
1976.

[4] Lozano-Perez, T. Spatial planning: A configuration space approach.

IEEE Trans. on Computers C-32, 2, 1983, 108-120.

[5] Schneider, F.B. and G. R. Andrews. Concepts for concurrent program-

ming. In Current Trend3 in Concurrency. (J.W. de Bakker, W.P. de

Rocver, and G. Rozenberg, eds.) Lecture Notes in Computer Science,

Volume 224, Springer-Vedag, New York, 1986, 669-716.

-12-

